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Abstract. We have derived a low-temperature expansion appropriate to the ‘superantifer- 
romagnetic’ or ( 2  x 1) ordered phase of the king model with first- and second-neighbour 
interactions on a square lattice. The critical exponent p shows a non-universal variation 
along the critical line, which is in reasonable agreement with the variation expected on 
the basis of scaling. 

1. Introduction 

The inclusion of second-neighbour interactions in the square lattice Ising model leads 
to a new type of ordered phase, the ‘superantiferromagnetic’ or ( 2  x 1) phase. There 
is by now considerable evidence that the transition from this phase to the high- 
temperature paramagnetic phase is characterised by continuously varying critical 
exponents, and thus a violation of universality. This makes the model extremely 
interesting from a theoretical viewpoint. 

The system is described by the Hamiltonian 

where the exchange constants J ,  , J2 can have either sign and the summations are over 
nearest-neighbour pairs and next-nearest-neighbour pairs respectively. It is often 
convenient to incorporate the temperature into the definition of coupling constants 
and to write 

The nature of the ground states is shown in figure l (a ) .  For sufficiently strong 
antiferromagnetic next-nearest-neighbour interactions, in particular for J 2  < -flJII, the 
ground state consists of alternating rows (or columns) of up  and down spins. This 
phase has been variously referred to as the superantiferromagnetic (SAF)  phase, the 
A F ~  phase or the (2 x 1) phase. 

The free energy per spin f( K , ,  K , )  will exhibit singularities along critical lines in 
the ( K l ,  K,) plane, as shown in figure l ( b ) .  The upper two lines, which represent 
transitions from the ferromagnetic ( F) or antiferromagnetic ( A F )  phases to the high- 
temperature paramagnetic phase (P), are expected to show the usual universal two- 
dimensional Ising critical behaviour. However, along the lower branch the critical 
exponents have been found to vary continuously with the coupling constants. The 

0305-4470/87/051269 + 08$02.50 @ 1987 IOP Publishing Ltd 1269 



1270 J Oitmaa and M J Velgakis 

:+-I-; 1; 
1- + - + I  
I+ - + - I  
L-- 2 -: 3 

AF 

?-:-a 
I+ + + +I 
I + + + + !  
L+- 2-+_ _+: 

F 

first indication of this was by van Leeuwen (1975) from real space renormalisation 
group studies. Subsequent work using transfer matrix methods (Nightingale 1977, 
1979), Monte Carlo renormalisation group methods (Swendsen and Krinsky 1979), 
conventional Monte Carlo methods (Landau 1980, Binder and Landau 1980), and high 
temperature series (Oitmaa 1981:) have not only confirmed this non-universal behaviour 
but provided quantitative estimates of the values of the exponents v, a, y along the 
critical line. 

In none of the papers referred to above has a direct estimate been made of the 
critical exponent p which characterises the vanishing of the appropriate order parameter 
at T,. The assumption of scaling, which implies 

a + 2 p + y = 2  (3) 
allows p to be determined from the estimated values of a, y. In the work reported 
here we derive low-temperature series for this model in order to obtain an independent 
estimate of the value of p along the critical line, and hence to check the validity of 
scaling for this transition. 

2. Derivation of the series 

Low-temperature series for Ising systems are derived by enumerating configurations 
which involve successively more and more spin deviations from the appropriate ordered 
state. We can thus write the partition function as 

where Eo is the ground-state energy, AEc is the energy increase for a configuration ( c )  
and the summation is over all configurations. 

For systems with nearest-neighbour ferromagnetic interactions, or nearest-neigh- 
bour antiferromagnetic interactions for bipartite lattices, there are powerful methods 
for extracting maximum information for a given amount of effort (Sykes er a1 1965, 
1973a, b, c). These methods, .based on the ideas of ‘partial generating functions’ and 
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‘codes’, have been generalised to models with further-neighbour interactions (Plischke 
and Chan 1976, Velgakis 1980, Velgakis and Ferer 1983). However, for such systems, 
the need to consider four or more sublattices makes this approach rather complicated 
and a more primitive approach based on (4) is in our view preferable. 

The order parameter for the SAF phase of the system is given by 

where the summation is taken over all N sites of the lattice and qi = +1,  -1  on 
successive rows. To stabilise this ground state with respect to the equivalent ground 
states we introduce a staggered field hi = qih,  which points up on even rows and down 
on odd rows. Thus the full Hamiltonian is 

Note that we do not include a uniform external field. 
The ground-state energy, for the SAF phase, is given by Eo = -2NJJ21 - N h .  For a 

configuration of r spins overturned from the ground state, the energy increase can 
easily be obtained as 

AE, = ( 2  h ) r + 45, (s, - sh) + 41J21 ( 2  r - t ) (7) 

where s,, sh represent the number of vertical and horizontal nearest-neighbour bonds 
in the configuration and t is the number of second-neighbour bonds. We define variables 

U = exp( -4K1) v = exp( -41 K21) /I = exp( - 2 p h )  (8) 

in terms of which 

exp( -PAE,) = U S v - ’ h v z r - ’  C L .  

The free energy per spin can then be obtained from (4) as 

- p f = 2 1 K Z l + p h +  c &(U, v ) / I ‘  
(0) 

(9) 

where the sum is over all graphs with one or more spins overturned from the ground 
state, XG( U, v )  is obtained from the embeddings of G in the lattice, and r is the number 
of vertices in G. Some simple examples are given in figure 2. By grouping the terms 
in (10) we obtain a low-temperature expansion for the free energy in the form of a 
‘field grouping’ 

Enumeration of the graphs which contribute to (10) is a well known problem in 
graph theory (see, e.g., Domb 1974). The number of graphs increases rapidly with the 
number of vertices r, the numbers at successive orders being 1 ,  2 ,  4, 1 1 ,  34, 156, 1044, 
12 346, , . . , We have generated all graphs up to eight order by computer. The evaluation 
of the quantity X,( U, U )  for a given graph has also been carried out largely by computer, 
using a counting program for ‘strong embeddings’. 

While we have obtained the complete expressions for L,( U, U )  for r s 5 ,  for r > 5 
we have only considered contributions up to order v8. Many of the graphs with r = 6, 
7,  8 do not contribute to this order. However it is necessary to include a partial set 
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Figure 2. Graphs w,ith up to four overturned spins and the associated factors X,,.(u,  U).  
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of graphs with u p  to 16 vertices. The 173 such graphs with 9 < r 16 were obtained 
by hand. The complete expressions for L,-L5 and the leading terms for L6-L16 are 
given in the appendix. By setting U = 1, i.e. J ,  =0, the model decouples into two 
nearest-neighbour Ising models. This provides a valuable check on our results, since 
in this limit the L , ( u )  reduce to the ferromagnetic polynomials given by Sykes er a1 
(1965, 1973b). 

The order parameter is obtainable from (1 1 )  through 

X 

= I - 2  C rL,(u,u). 
, = I  

Using the data from the appendix we then obtain a low-temperature expansion for M ,  
in powers of U :  

M ,  = 1 - z U 2  - gU3 - (48, + 26) u4 - ( 246, + 104) u 5  - (6e2 + 1246, + 454) u6 

- (4802 + 6806, + 2 0 1 6 ) ~ ’  - (86, + 3566,+ 36566] + 9 2 7 8 ) ~ ’  -. . . (13) 

where we introduce the notation 6, = U“ + U-”. In a similar way the low-temperature 
susceptibility can be obtained as 

which gives 

kTX, = 4 ~ ‘ + 3 2 ~ ~ + ( 1 6 6 ~ + 2 0 8 ) ~ ~ + ( 1 4 4 6 , +  1 3 7 6 ) ~ ’  

+ ( 3602 + 1 17601 + 8 7 4 0 ) ~ ~  + (38402 + 939201 + 53 6 3 2 ) ~ ’  

+ (640, +41 1202+69 4086, +324 896)uS+. . . . (15 )  

3. Analysis of the series 

Having obtained the low-temperature series for the order parameter M, (13), we then 
seek to estimate the critical ‘temperature’ U, and exponent p defined by 

It is convenient to analyse the series for fixed values of K ,  and hence U, as the series 
then becomes a single variable series in U. 

The quantities U, and p are most simply estimated as the pole and residue of Pad6 
approximants to the logarithmic derivative series ( d l d u )  In M,. In fact, for K =0, 
where the critical point singularity is exactly factorisable, the Dlog PadC approximants 
give U, and p exactly. In table 1 we show results obtained in this way for two cases, 
K = 0.1 and  K = 0.3. As is apparent from the tables, for K = 0.1 the results are very 
consistent and allow both U, and p to be estimated, with confidence, to higher than 
1 YO accuracy. As K increases the estimates become more erratic, but for K s 0.6 quite 
confident estimates can be made for both U, and p. 

It is important to compare the estimates of U, obtained in this way with other 
estimates. The most reliable results would appear to be from the transfer matrix 
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Table 1. Estimates of U, and p (lower line) from [ N ,  D] Pad6 approximants to (d /du)  In M , .  
For K =0.1, estimates of v,=0.1704*Oo.0001, p =0.1235*0.0005; for K =0.3, estimates 
of U, = 0.161 f 0,001, p = 0.1 12 * 0.002. 

K D N  2 3 4 5 

0.1 2 0.170 13 0.170 29 0.17035 
0.122 51 0.123 15 0.123 44 

3 0.170 39 0.170 39 0.170 35 
0.123 65 0.123 66 0.123 46 

4 0.170 39 0.170 39 
0.123 66 0.123 65 

5 0.170 37 
0.123 56 

0.3 2 0.159 87 0.160 76 0.160 89 
0.108 59 0.111 94 0.112 53 

3 0.161 94 0.161 21 0.16091 
0.117 35 0.11406 0.112 59 

4 0.160 17 0.160 37 
0.108 04 0.109 35 

5 0.160 37 
0.109 34 

calculations (Nightingale 1979). For K = 0.1 and 0.3 these are 

K = 0.1 + K '  = -0.4425 * 0.0001 U, = 0.1703 * 0.0001 

K =0.3+ K ' =  -0.4567*0.0001 u,=0.1609*0.0001 

both consistent with our estimates. It is interesting to note that the estimates of U, 
from high-temperature series (Oitmaa 1981) appear to be less accurate, particularly 
for larger values of K .  

If v,  is assumed to be known then refined estimates of p can be obtained in at 
least two ways: 

(i)  by forming Pad6 approximants to the series for (U, - u)(d/du) In M ,  and evaluat- 
ing these at U = U,, and 

(ii) by forming Pad6 approximates to the series for M;' lP  for a range of p values 
and choosing the value of /3 for which the approximants have a pole at U,. 

In table 2 we give estimates of p obtained by both of these methods. The two 
estimates are fully consistent although those obtained by method (ii)  have smaller 

Table 2. Estimates of the critical exponent p from low-temperature series and from the 
scaling relation a + 2p + y = 2. 

Pad6 approximants to Pad6 approximants to Transfer matrix 
K (o,-u)(d/du) In M ,  M ; ' / B  plus scaling 

0.1 0.123 i 0.005 0.1233 * 0.0001 0.123 *0.002 
0.2 0.1 18 * 0.001 0.1 183 i 0.0002 0.120 * 0.005 
0.3 0.1 13 i 0.001 0.1125*0.0004 0.11 5 * 0.005 
0.4 0.107i0.001 0.1068 i 0.0008 0.110 * 0.008 
0.5 0.101 i0.0015 0.101 io.OO1 0.104*0.008 
0.6 0.094 i 0.002 0.095 * 0.001 0.098 i 0.008 
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error estimates. There is a clear continuous variation of p along the critical line, 
confirming the non-universal nature of the SAF transition in this model. 

To test the validity of the scaling relation a + 2p + y = 2 we proceed as follows. 
We take the values of a and y obtained from the transfer matrix results of Nightingale 
as the best estimates of these quantities, and from these determine a value of p. These 
values are also shown in table 2. The error estimates are rather large s iwe p is given 
as the difference of two quantities of comparable magnitude. However, it is clear from 
table 2 that our estimates of p lie well within the range obtained from scaling. Hence 
we concluded that, although a, p, y all vary along the SAF line, the relation a + 2p + y = 
2 remains valid. 

Finally we remark that analysis of the low-temperature series for the susceptibility 
xS, while considerably less precise, yields estimates of y' consistent with the scaling 
result y' = y. 

4. Conclusions 

We have derived low-temperature series for the superantiferromagnetic or (2 x 1) 
ordered phase of the square lattice Ising model with first- and second-neighbour 
interactions. Our experience in the actual series derivation has been that the primitive 
approach, based on direct enumeration of spin configurations, is simpler than the 
partial generating function approach. 

The low-temperature series for the order parameter of this phase has been derived 
up to eighth order in the appropriate temperature variable and has been analysed to 
obtain the first direct estimates of the critical exponent p. p is found to vary continously 
along the SAF critical line, in accordance with expectations. Our estimates of p confirm 
the validity of the scaling relation a + 2p + y = 2 along this line, but provide more 
precise estimates of p than obtainable indirectly from the scaling relation. 

It is an intriguing yet unanswered question whether the SAF transition for this model 
is in fact related to the non-universal transition of the eight-vertex model. 
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Appendix 

Complete and partial expressions for the quantities L,( U, U )  as defined by (1 1). The 
abbreviation 8, = U" + U-'' is used to simplify the expressions 

L1 = u2 

L, = 2v3  + ( el - 44) u4 

L, = 6u4+ (4el - 24)d- t  (e, - 1 2 4  + 3 2 f ) d  

L~ = u4+ 18u5 + (228, - 129)u6+ (6e2 - iooe, + 306)u7+ ( e3 - 22&+ 1458, - 299 : )~~  
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Ls = 8 u S +  (201 +39)u6+ ( 10401 - 6 0 8 ) ~ ~  + ( 4 4 0 2  -74861 + 2 3 3 4 ) ~ '  

+ (se, - 244e2 + 18608, - 4 1 2 0 ) ~ ~  

+ (04 - 3603 + 40502 - 18224 + 3 1 9 9 f ) ~ ' "  

L6= 2us + 4 h 6 +  (3261 -34)u7 + (8&+ 37881 -2423)uR+. . . 
L7 =22u6+ (401 + 1 2 8 ) ~ ~ + ( 2 6 0 0 l -  1 0 0 6 ) ~ ~ + .  . . 
L 8 = 6 u 6 + 1 3 4 u 7 + ( 9 2 O 1 + 1 0 ~ ) U 8 + .  . . 
L , = u 6 + 7 2 u 7 + ( 1 6 0 1 + 5 0 8 ) u s + .  . . 
Ll,=30v7+(201+457)vs+.  . . 

L12=2u7+151u8+.  . . 

L14 = 22u8 + . * . 

L,,5=u + . . . .  

L I 1  =8v7+310u8+.  . . 

LI3 = 68u8+.  . . 

LIs=6u8+ . . .  
8 
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